Estimation and empirical performance of non-scalar dynamic conditional correlation models
نویسندگان
چکیده
This paper presents a method capable of estimating richly parametrized versions of the dynamic conditional correlation (DCC) model that go beyond the standard scalar case. The algorithm is based on the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method to handle the various non-linear stationarity and positivity constraints that arise in this context. We consider the general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two different rank one matrix specifications. In the last mentioned case, the elements of the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the Almon lag function. We use actual stock returns data in dimensions up to thirty in order to carry out performance comparisons according to several inand out-of-sample criteria. Our empirical results show that the use of richly parametrized models adds value with respect to the conventional scalar case.
منابع مشابه
Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملDynamic Cross Hedging Effectiveness between Gold and Stock Market Based on Downside Risk Measures: Evidence from Iran Emerging Capital Market
This paper examines the hedging effectiveness of gold futures for the stock market in minimizing variance and downside risks, including value at risk and expected shortfall using data from the Iran emerging capital market during four different sub-periods from December 2008 to August 2018. We employ dynamic conditional correlation models including VARMA-BGARCH (DCC, ADCC, BEKK, and ABEKK) and c...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملEstimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models
In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...
متن کاملPerformance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2016